

 Navigation

 	
 index

 	
 routing table |

 	
 next |

 	Webpush Channel Broadcast 0.1.0 documentation

WebPush Channel Broadcast Documentation

Contents:

	Overview
	What is WebPush?

	What is this WebPush Channel Broadcasting service about?

	1.x
	Full reference

	Cheatsheet

Indices and tables

	Index

	Module Index

	Search Page

 Copyright 2016, Mansimar Kaur.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 routing table |

 	
 next |

 	
 previous |

 	Webpush Channel Broadcast 0.1.0 documentation

Overview

What is WebPush?

WebPush is the web standard to allow a server to notify its client
that something changed.

In your webapp you ask the browser for a subscription, you start a
service-worker that will handle notifications and you send your
subscription to the server so that it can send you notifications.

[image: A schema describing interactions between a service, the browser and the Mozilla Push Server]
Example of how we could use WebPush with Kinto.

For more about WebPush, do not hesitate to read this article [https://medium.com/@mansimarkaur.mks/the-what-and-how-of-web-push-69209dd144f7]

What is this WebPush Channel Broadcasting service about?

tl;dr Broadcasting notifications using WebPush made simple.

Handling sending notifications to a large number of users for a web
service might be a problem.

	It can slow down the request response time by a lot, or you need to
spawn tasks workers (i.e celery, rq))

	You need to store and retrieve the subscription and have endpoint
for your clients to manage them.

	You need to handle errors, retry, etc.

The WebPush Channel broadcasting service follow the micro-services
philosophy and handle all these tasks for you:

	It will allow you to notify all your users with one simple HTTP POST
request that will be accepted in milliseconds.

	It will automatically handle the load of sending thousands of
notifications, encrypt them specifically for each subscription.

	It will allow your users to manage their subscriptions and the list
of channels they are listening to.

	It will handle errors and retry.

 Copyright 2016, Mansimar Kaur.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 routing table |

 	
 next |

 	
 previous |

 	Webpush Channel Broadcast 0.1.0 documentation

1.x

Full reference

Full detailed API documentation:

	Authentication

	Channels

	Subscriptions

	Utility endpoints for OPS and Devs

	Backoff indicators

	Error responses

	Deprecation

Cheatsheet

	Method
	URI
	Description

	GET
	/
	Information about the running instance

	GET
	/__heartbeat__
	Return the status of dependent services

	Channels

	PUT
	/channels/(channel_id)/registration
	Subscribe to a channel

	DELETE
	/channels/(channel_id)/registration
	Unsubscribe from a channel

	GET
	/channels/(channel_id)
	Get channel details

	POST
	/channels/(channel_id)
	Broadcast push notification

	Subscriptions

	POST
	/subscriptions
	Add a new user subscription

	GET
	/subscriptions
	Get the list of user’s subscriptions

	DELETE
	/subscriptions
	Delete user’s subscriptions

	DELETE
	/subscriptions/(subscription_id)
	Delete an user subscription

 Copyright 2016, Mansimar Kaur.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 routing table |

 	
 next |

 	
 previous |

 	Webpush Channel Broadcast 0.1.0 documentation

 	1.x

Authentication

A word about users

First of all, WebPush Channels doesn’t provide users management.

There is no such thing as user sign-up, password modification, etc.

However, users are uniquely identified.

How is that possible?

WebPush Channels uses the request headers to authenticate the current user.

Depending on the authentication methods enabled in configuration,
the HTTP method to authenticate requests may differ.

WebPush Channels can rely on a third-party called «Identity provider [https://en.wikipedia.org/wiki/Identity_provider]»
to authenticate the request and assign a user id.

There are many identity providers solutions in the wild. The most common are OAuth,
JWT, SAML, x509, Hawk sessions...

A policy based on OAuth2 bearer tokens is recommended, but not mandatory.

Multiple policies

It is possible to enable several authentication methods.

In the current implementation, when multiple policies are configured,
the first one in the list that succeeds is picked.

User identifiers are prefixed with the policy name being used.

OAuth Bearer token

If the configured authentication policy uses OAuth2 bearer tokens, authentication
shall be done using this header:

Authorization: Bearer <oauth_token>

The policy will verify the provided OAuth2 bearer token on a remote server.

	notes:	If the token is not valid, this will result in a 401 Unauthorized error response.

Portier

In order to enable authentication with Portier, install and
configure Kinto/kinto-portier [https://github.com/Kinto/kinto-portier/].

Firefox Accounts

In order to enable authentication with Firefox Accounts, install and
configure mozilla-services/kinto-fxa [https://github.com/mozilla-services/kinto-fxa/].

 Copyright 2016, Mansimar Kaur.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 routing table |

 	
 next |

 	
 previous |

 	Webpush Channel Broadcast 0.1.0 documentation

 	1.x

Channels

Basically the idea being channels is the same as TV channels where one
broadcast a message and others can listen to it.

The idea is that people can listen to channels even if they don’t
exists.

The service configuration as well as the permission backend define a
list of users that can publish on given channels.

Register to a channel

	
PUT /channels/(channel_id)/registration

	

	synopsis:	Subscribe the user to the channel

Requires authentication

Example Request

$ http PUT http://localhost:9999/v0/channels/formbuilder-collections-update/registration Authorization:"Portier dccd8ac07f3e45c9907da638e994ff98" -v

PUT /v0/channels/formbuilder-collections-update/registration HTTP/1.1
Accept: */*
Accept-Encoding: gzip, deflate
Authorization: Portier dccd8ac07f3e45c9907da638e994ff98
Connection: keep-alive
Host: localhost:9999
User-Agent: HTTPie/0.9.2

Example Response

HTTP/1.1 202 Accepted
Access-Control-Expose-Headers: Backoff, Retry-After, Alert
Date: Thu, 18 Jun 2015 17:02:23 GMT
Server: waitress

{"code": 202, "message": "Accepted"}

Unsubscribing from a channel

	
DELETE /channels/(channel_id)/registration

	

	synopsis:	Unsubscribe the user from the channel

Requires authentication

Example Request

$ http delete http://localhost:9999/v0/channels/formbuilder-collections-write/registration Authorization:"Portier dccd8ac07f3e45c9907da638e994ff98" -v

DELETE /v0/channels/formbuilder-collections-update/registration HTTP/1.1
Accept: */*
Accept-Encoding: gzip, deflate
Authorization: Portier dccd8ac07f3e45c9907da638e994ff98
Connection: keep-alive
Host: localhost:9999
User-Agent: HTTPie/0.9.2

Example Response

HTTP/1.1 202 Accepted
Access-Control-Expose-Headers: Backoff, Retry-After, Alert
Date: Thu, 18 Jun 2015 17:02:23 GMT
Server: waitress

{"code": 202, "message": "Accepted"}

Getting channels informations

	
GET /channels/(channel_id)

	

	Synopsis:	Retrieve channel informations

Example Request

$ http get http://localhost:9999/v0/channels/formbuilder-collection-write Authorization:"Portier dccd8ac07f3e45c9907da638e994ff98" -v

GET /v0/channels/formbuilder-collection-write HTTP/1.1
Accept: */*
Accept-Encoding: gzip, deflate
Authorization: Basic Ym9iOg==
Connection: keep-alive
Host: localhost:9999
User-Agent: HTTPie/0.9.2

Example Response

HTTP/1.1 200 OK
Access-Control-Expose-Headers: Backoff, Retry-After, Alert, Last-Modified, ETag
Content-Length: 211
Content-Type: application/json; charset=UTF-8
Date: Thu, 18 Jun 2015 17:29:59 GMT
Etag: "1434648599199"
Last-Modified: Thu, 18 Jun 2015 17:29:59 GMT
Server: waitress

{
 "data": {
 "id": "formbuilder-collection-write",
 "registrations": 1,
 "push": 0
 }
}

	registration contains the number of users that subscribed to the
channel.

	push contains the number of push that were sent to the channel.

Broadcasting a push notification

For the first version, only users configured in the service
configuration can broadcast notifications.

However in the future we aim at adding a permissions management feature to
the channel.

	
POST /channels/(channel_id)

	

	synopsis:	Push a notification

Requires authentication

Example Request

$ http post http://localhost:9999/v0/channels/formbuilder-collections-write Authorization:"Portier dccd8ac07f3e45c9907da638e994ff98" -v

POST /v0/channels/formbuilder-collections-update HTTP/1.1
Accept: application/json
Accept-Encoding: gzip, deflate
Authorization: Basic Ym9iOg==
Connection: keep-alive
Content-Length: 25
Content-Type: application/json
Host: localhost:9999
User-Agent: HTTPie/0.9.2

{
 "data": {
 "last_modified": 1434647996969
 }
}

Example Response

HTTP/1.1 202 Accepted
Access-Control-Expose-Headers: Backoff, Retry-After, Alert
Date: Thu, 18 Jun 2015 17:02:23 GMT
Server: waitress

{"code": 202, "message": "Accepted"}

The data payload will be encrypted for each subscriptions and sent
authenticated through the endpoint.

 Copyright 2016, Mansimar Kaur.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 routing table |

 	
 next |

 	
 previous |

 	Webpush Channel Broadcast 0.1.0 documentation

 	1.x

Subscriptions

Subscriptions belongs to an user.

A user can have multiple subscriptions (one per browser session or
device).

A subscription consist on the information that you can get from a
requesting a Push subscription on the browser.

{
 "data": {
 "endpoint": "https://updates.push.services.mozilla.com/wpush/v1/gAAAAABYZNChoTLTAeA9vv-_zeqGuZiM4ESpiV7oiT5XtrN8aI01fiCQ7-_hC8lhqXanjUEWp5MFRoq35QmzdplCkRhp5nRgjwneGCGO8WXYH9psZaD_xInKLWm7K8-tzFAp-vRNHx79",
 "keys": {
 "auth": "pnipzxpMvKBNYZAcxc-MAA",
 "p256dh": "BEVoH6cOlNPuvYR0aVJo4GVv84nbymzpXxNff7hpKYjVIFcuIEtqiLtIe4rLOXF_A2w3KWRJoCYJEjUedrXcNpc"
 }
 }
}

Add a new user subscription

	
POST /subscriptions

	

	synopsis:	Store a subscription. The ID will be assigned automatically.

Requires authentication

Example Request

$ echo '{"data": {"endpoint": "URL", "keys": {}}}' | http post http://localhost:9999/v0/subscriptions Authorization:"Portier dccd8ac07f3e45c9907da638e994ff98" -v

POST /v0/subscriptions HTTP/1.1
Accept: application/json
Accept-Encoding: gzip, deflate
Authorization: Portier dccd8ac07f3e45c9907da638e994ff98
Connection: keep-alive
Content-Length: 25
Content-Type: application/json
Host: localhost:9999
User-Agent: HTTPie/0.9.2

{
 "data": {
 "endpoint": "https://updates.push.services.mozilla.com/wpush/v1/gAAAAABYZNChoTLTAeA9vv-_zeqGuZiM4ESpiV7oiT5XtrN8aI01fiCQ7-_hC8lhqXanjUEWp5MFRoq35QmzdplCkRhp5nRgjwneGCGO8WXYH9psZaD_xInKLWm7K8-tzFAp-vRNHx79",
 "keys": {
 "auth": "pnipzxpMvKBNYZAcxc-MAA",
 "p256dh": "BEVoH6cOlNPuvYR0aVJo4GVv84nbymzpXxNff7hpKYjVIFcuIEtqiLtIe4rLOXF_A2w3KWRJoCYJEjUedrXcNpc"
 }
 }
}

Example Response

HTTP/1.1 201 Created
Access-Control-Expose-Headers: Backoff, Retry-After, Alert
Content-Length: 199
Content-Type: application/json; charset=UTF-8
Date: Thu, 18 Jun 2015 17:02:23 GMT
Server: waitress

{
 "data": {
 "endpoint": "https://updates.push.services.mozilla.com/wpush/v1/gAAAAABYZNChoTLTAeA9vv-_zeqGuZiM4ESpiV7oiT5XtrN8aI01fiCQ7-_hC8lhqXanjUEWp5MFRoq35QmzdplCkRhp5nRgjwneGCGO8WXYH9psZaD_xInKLWm7K8-tzFAp-vRNHx79",
 "keys": {
 "auth": "pnipzxpMvKBNYZAcxc-MAA",
 "p256dh": "BEVoH6cOlNPuvYR0aVJo4GVv84nbymzpXxNff7hpKYjVIFcuIEtqiLtIe4rLOXF_A2w3KWRJoCYJEjUedrXcNpc"
 }
 }
}

Validation

If the posted values are invalid (e.g. field value is not an integer)
an error response is returned with 400 Bad Request.

See details on error responses.

HTTP Status Codes

	200 OK: This object already exists, the one stored on the database is returned

	201 Created: The object was created

	400 Bad Request: The request body is invalid

	401 Unauthorized: The request is missing authentication headers

	403 Forbidden: The user is not allowed to perform the operation, or the resource is not accessible

	406 Not Acceptable: The client doesn’t accept supported responses Content-Type

	412 Precondition Failed: List has changed since value in If-Match header

	415 Unsupported Media Type: The client request was not sent with a correct Content-Type

Retrieving user’s subscriptions

	
GET /subscriptions

	

	Synopsis:	Retrieve all the subscriptions for the user.

Requires authentication

Example Request

$ http get http://localhost:9999/v0/subscriptions Authorization:"Portier dccd8ac07f3e45c9907da638e994ff98"

GET /v0/subscriptions HTTP/1.1
Accept: */*
Accept-Encoding: gzip, deflate
Authorization: Portier dccd8ac07f3e45c9907da638e994ff98
Connection: keep-alive
Host: localhost:9999
User-Agent: HTTPie/0.9.2

HTTP/1.1 200 OK
Access-Control-Expose-Headers: Backoff, Retry-After, Alert, Next-Page, Total-Records, Last-Modified, ETag
Content-Length: 110
Content-Type: application/json; charset=UTF-8
Date: Thu, 18 Jun 2015 17:24:38 GMT
Etag: "1434648278603"
Last-Modified: Thu, 18 Jun 2015 17:24:38 GMT
Server: waitress
Total-Records: 1

{
 "data": [
 {
 "endpoint": "https://updates.push.services.mozilla.com/wpush/v1/gAAAAABYZNChoTLTAeA9vv-_zeqGuZiM4ESpiV7oiT5XtrN8aI01fiCQ7-_hC8lhqXanjUEWp5MFRoq35QmzdplCkRhp5nRgjwneGCGO8WXYH9psZaD_xInKLWm7K8-tzFAp-vRNHx79",
 "keys": {
 "auth": "pnipzxpMvKBNYZAcxc-MAA",
 "p256dh": "BEVoH6cOlNPuvYR0aVJo4GVv84nbymzpXxNff7hpKYjVIFcuIEtqiLtIe4rLOXF_A2w3KWRJoCYJEjUedrXcNpc"
 },
 "id": "89881454-e4e9-4ef0-99a9-404d95900352",
 "last_modified": 1434647996969
 }
]
}

Delete user’s subscriptions

	
DELETE /subscriptions

	

	Synopsis:	Delete all the user’s subscriptions

Requires authentication

Example Request

$ http delete http://localhost:9999/v0/subscriptions Authorization:"Portier dccd8ac07f3e45c9907da638e994ff98"

DELETE /v0/subscriptions HTTP/1.1
Accept: */*
Accept-Encoding: gzip, deflate
Authorization: Portier dccd8ac07f3e45c9907da638e994ff98
Connection: keep-alive
Host: localhost:9999
User-Agent: HTTPie/0.9.2

Example Response

HTTP/1.1 200 OK
Access-Control-Expose-Headers: Backoff, Retry-After, Alert, Last-Modified, ETag
Content-Length: 211
Content-Type: application/json; charset=UTF-8
Date: Thu, 18 Jun 2015 17:29:59 GMT
Etag: "1434648599199"
Last-Modified: Thu, 18 Jun 2015 17:29:59 GMT
Server: waitress

{
 "data": [{
 "deleted": true,
 "id": "89881454-e4e9-4ef0-99a9-404d95900352",
 "last_modified": 1434648749173
 }]
}

Deleting a single subscription

	
DELETE /subscriptions/(subscription_id)

	

	Synopsis:	Delete a subscription by its ID.

Example Request

$ http delete http://localhost:9999/v0/subscriptions/89881454-e4e9-4ef0-99a9-404d95900352 Authorization:"Portier dccd8ac07f3e45c9907da638e994ff98"

DELETE /v0/subscriptions/89881454-e4e9-4ef0-99a9-404d95900352 HTTP/1.1
Accept: */*
Accept-Encoding: gzip, deflate
Authorization: Portier dccd8ac07f3e45c9907da638e994ff98
Connection: keep-alive
Content-Length: 0
Host: localhost:9999
User-Agent: HTTPie/0.9.2

Example Response

HTTP/1.1 200 OK
Access-Control-Expose-Headers: Backoff, Retry-After, Alert
Content-Length: 99
Content-Type: application/json; charset=UTF-8
Date: Thu, 18 Jun 2015 17:32:29 GMT
Server: waitress

{
 "data": {
 "deleted": true,
 "id": "89881454-e4e9-4ef0-99a9-404d95900352",
 "last_modified": 1434648749173
 }
}

 Copyright 2016, Mansimar Kaur.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 routing table |

 	
 next |

 	
 previous |

 	Webpush Channel Broadcast 0.1.0 documentation

 	1.x

Utility endpoints for OPS and Devs

GET /

The returned value is a JSON mapping containing:

Changed in version 3.0.

	project_name: the name of the service (e.g. "reading list")

	project_docs: The URL to the service documentation. (this document!)

	project_version: complete application/project version ("3.14.116")

	http_api_version: the MAJOR.MINOR version of the exposed HTTP API ("1.1")
defined in the project.

	url: absolute URI (without a trailing slash) of the API (can be used by client to build URIs)

	eos: date of end of support in ISO 8601 format ("yyyy-mm-dd", undefined if unknown)

	settings: a mapping with the values of relevant public settings for clients

	batch_max_requests: Number of requests that can be made in a batch request.

	readonly: Only requests with read operations are allowed.

	capabilities: a mapping used by clients to detect optional features of the API.

	Example:

{
 "fxa": {
 "description": "Firefox Account authentication",
 "url": "http://github.com/mozilla-services/kinto-fxa"
 }
}

Optional

	user: A mapping with an id field and a list of principals
for the currently connected user id.
The field is not present when no Authorization header is provided.

Note

The project_version contains the source code version, whereas the http_api_version contains the exposed HTTP API version.

The source code of the service can suffer changes and have its project version
incremented, without impacting the publicly exposed HTTP API.

GET /__heartbeat__

Return the status of each service the application depends on. The
returned value is a JSON mapping containing:

	storage true if storage backend is operational

	cache true if cache backend operational

If kinto-fxa is installed, an additional key is present:

	oauth true if FxA authentication is operational

If kinto-portier is installed, an additional key is present:

	portier true if portier authentication is operational

Return 200 OK if the connection with each service is working properly
and 503 Service Unavailable if something doesn’t work.

GET /__lbheartbeat__

Always return 200 OK with empty body.

Unlike the __heartbeat__ health check endpoint, which return an error
when backends and other upstream services are unavailable, this should
always return 200 OK.

This endpoint is suitable for a load balancer membership test.
It the load balancer cannot obtain a response from this endpoint, it will
stop sending traffic to the instance and replace it.

GET /contribute.json

The returned value is a JSON mapping containing open source contribution
information as advocated by https://www.contributejson.org

GET /__version__

Return a JSON mapping containing information about what distribution
has been deployed by OPs.

{
 "name":"webpush-channels",
 "version":"1.0.1",
 "commit":"ab8db089ee63dc8e14f4bcfc427a86f311dd7e52",
 "source":"https://github.com/mansimarkaur/webpush-channels.git"
}

The content of this view comes from a file, whose location is
specified via the webpush_channels.version_json_path setting or
WEBPUSH_CHANNELS_VERSION_JSON_PATH environment variable (default
location is version.json in current working directory).

Return 404 Not Found if no version.json file is found.

 Copyright 2016, Mansimar Kaur.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 routing table |

 	
 next |

 	
 previous |

 	Webpush Channel Broadcast 0.1.0 documentation

 	1.x

Backoff indicators

Backoff header on heavy load

A Backoff header will be added to the success responses (>=200 and
<400) when the server is under heavy load. It provides the client with
a number of seconds during which it should avoid doing unnecessary
requests.

Backoff: 30

Note

The back-off time is configurable on the server.

Note

In other implementations at Mozilla, there was
X-Weave-Backoff and X-Backoff but the X- prefix for
header has been deprecated since [http://tools.ietf.org/html/rfc6648].

Retry-After indicators

A Retry-After header will be added if response is an error (>=500).
See more details about error responses.

 Copyright 2016, Mansimar Kaur.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 routing table |

 	
 next |

 	
 previous |

 	Webpush Channel Broadcast 0.1.0 documentation

 	1.x

Error responses

API description

Every response is JSON.

If the HTTP status is not OK (<200 or >=400), the response contains a JSON mapping, with the following attributes:

	code: matches the HTTP status code (e.g 400)

	errno: stable application-level error number (e.g. 109)

	error: string description of error type (e.g. "Bad request")

	message: context information (e.g. "Invalid request parameters")

	info: online resource (e.g. URL to error details)

	details: additional details (e.g. list of validation errors)

Example response

{
 "code": 412,
 "errno": 114,
 "error": "Precondition Failed",
 "message": "Resource was modified meanwhile",
 "info": "https://server/docs/api.html#errors",
}

Refer yourself to the set of errors codes.

Retry-After indicators

A Retry-After header will be added to error responses (>=500),
telling the client how many seconds it should wait before trying
again.

Retry-After: 30

Validation errors

When multiple validation errors occur on a request, the first one is presented
in the message.

The full list of validation errors is provided in the details field.

{
 "code": 400,
 "errno": 109,
 "error": "Bad Request",
 "message": "Invalid posted data",
 "info": "https://server/docs/api.html#errors",
 "details": [
 {
 "description": "42 is not a string: {'name': ''}",
 "location": "body",
 "name": "name"
 }
]
}

 Copyright 2016, Mansimar Kaur.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 routing table |

 	
 previous |

 	Webpush Channel Broadcast 0.1.0 documentation

 	1.x

Deprecation

A track of the client version will be kept to know after which date each old version can be shutdown.

The date of the end of support is provided in the API root URL (e.g. /v1)

Using the Alert response header, the server can communicate any potential warning
messages, information, or other alerts.

The value is JSON mapping with the following attributes:

	code: one of the strings "soft-eol" or "hard-eol";

	message: a human-readable message (optional);

	url: a URL at which more information is available (optional).

A 410 Gone error response can be returned if the
client version is too old, or the service had been remplaced with
a new and better service using a new API version.

See details in configuration to activate deprecation.

 Copyright 2016, Mansimar Kaur.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 routing table |

 	Webpush Channel Broadcast 0.1.0 documentation

 HTTP Routing Table

 /channels |
 /subscriptions

 			

 		
 /channels	

 	
 	
 GET /channels/(channel_id)	

 	
 	
 POST /channels/(channel_id)	

 	
 	
 PUT /channels/(channel_id)/registration	

 	
 	
 DELETE /channels/(channel_id)/registration	

 			

 		
 /subscriptions	

 	
 	
 GET /subscriptions	

 	
 	
 POST /subscriptions	

 	
 	
 DELETE /subscriptions	

 	
 	
 DELETE /subscriptions/(subscription_id)	

 Copyright 2016, Mansimar Kaur.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 routing table |

 	Webpush Channel Broadcast 0.1.0 documentation

Index

 Copyright 2016, Mansimar Kaur.
 Created using Sphinx 1.3.5.

 _static/ajax-loader.gif

_static/file.png

_static/down-pressed.png

_static/up-pressed.png

_static/plus.png

_static/comment-bright.png

_static/comment.png

_static/down.png

_static/comment-close.png

_static/up.png

_images/webpush-schema.jpg
7. Payload received on the URL is sent
through the browser push websocket

2. Suscribe to Push Service

3. Get generated endpoint and
encryption key

4. Send the

endpoint and éériind‘gwde
encryption key to - Ioaé/ﬁo e
the Kinto Server payl
required

capability URL

_static/minus.png

api/_details-post-list.html

 Navigation

 		
 index

 		
 routing table |

 		Webpush Channel Broadcast 0.1.0 documentation »

Validation

If the posted values are invalid (e.g. field value is not an integer)
an error response is returned with 400 Bad Request.

See details on error responses.

 © Copyright 2016, Mansimar Kaur.
 Created using Sphinx 1.3.5.

search.html

 Navigation

 		
 index

 		
 routing table |

 		Webpush Channel Broadcast 0.1.0 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2016, Mansimar Kaur.
 Created using Sphinx 1.3.5.

api/_status-post-list.html

 Navigation

 		
 index

 		
 routing table |

 		Webpush Channel Broadcast 0.1.0 documentation »

HTTP Status Codes

		200 OK: This object already exists, the one stored on the database is returned

		201 Created: The object was created

		400 Bad Request: The request body is invalid

		401 Unauthorized: The request is missing authentication headers

		403 Forbidden: The user is not allowed to perform the operation, or the resource is not accessible

		406 Not Acceptable: The client doesn’t accept supported responses Content-Type

		412 Precondition Failed: List has changed since value in If-Match header

		415 Unsupported Media Type: The client request was not sent with a correct Content-Type

 © Copyright 2016, Mansimar Kaur.
 Created using Sphinx 1.3.5.

